
9.13 Using the this Pointer (cont.)

Using the this Pointer to Enable Cascaded Function Calls

• Another use of the this pointer is to enable cascaded member-function
calls—that is, invoking multiple functions in the same statement (as in line
12 of Fig. 9.26).

• The program of Figs. 9.24–9.26 modifies class Time’s set functions
setTime, setHour, setMinute and setSecond such that each
returns a reference to a Time object to enable cascaded member-function
calls.

• Notice in Fig. 9.25 that the last statement in the body of each of these
member functions returns *this (lines 23, 34, 45 and 56) into a return
type of Time &.

• The program of Fig. 9.26 creates Time object t (line 9), then uses it in
cascaded member-function calls (lines 12 and 24).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.14 static Class Members

• In certain cases, only one copy of a variable should be shared by all objects
of a class.

• A static data member is used for these and other reasons.

• Such a variable represents ―class-wide‖ information, i.e., data that is shared
by all instances and is not specific to any one object of the class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.14 static Class Members (cont.)

Scope and Initialization of static Data Members

• static data members have class scope.

• A static data member must be initialized exactly once.

• Fundamental-type static data members are initialized by default to 0.

• Prior to C++11, a static const data member of int or enum type
could be initialized in its declaration in the class definition and all other
static data members had to be defined and initialized at global
namespace scope (i.e., outside the body of the class definition).

• Again, C++11’s in-class initializers also allow you to initialize these
variables where they’re declared in the class definition.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.14 static Class Members (cont.)

Accessing static Data Members

• A class’s private and protected static members are normally
accessed through the class’s public member functions or friends.

• A class’s static members exist even when no objects of that class exist.

• To access a public static class member when no objects of the class
exist, simply prefix the class name and the scope resolution operator (::)
to the name of the data member.

• To access a private or protected static class member when no objects of the
class exist, provide a public static member function and call the
function by prefixing its name with the class name and scope resolution
operator.

• A static member function is a service of the class, not of a specific
object of the class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

